One point I would refute here is determinism. AI models are, by default, deterministic. They are made from deterministic parts and “any combination of deterministic components will result in a deterministic system”. Randomness has to be externally injected into e.g. current LLMs to produce ‘non-deterministic’ output.
There is the notable exception of newer models like ChatGPT4 which seemingly produces non-deterministic outputs (i.e. give it the same sentence and it produces different outputs even with its temperature set to 0) - but my understanding is this is due to floating point number inaccuracies which lead to different token selection and thus a function of our current processor architectures and not inherent in the model itself.
One point I would refute here is determinism. AI models are, by default, deterministic. They are made from deterministic parts and “any combination of deterministic components will result in a deterministic system”. Randomness has to be externally injected into e.g. current LLMs to produce ‘non-deterministic’ output.
There is the notable exception of newer models like ChatGPT4 which seemingly produces non-deterministic outputs (i.e. give it the same sentence and it produces different outputs even with its temperature set to 0) - but my understanding is this is due to floating point number inaccuracies which lead to different token selection and thus a function of our current processor architectures and not inherent in the model itself.